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We present a numerical method which computes the motion of com- 
plex solid/liquid boundaries in crystal growth. The model we solve 
includes physical effects such as crystalline anisotropy, surface tension, 
molecular kinetics, and undercooling. The method is based on two 
ideas. First, the equations of motion are recast as a single history- 
dependent boundary integral equation on the solid/liquid boundary. 
A fast algorithm is used to solve the integral equation efficiently. 
Second, the boundary is moved by solving a “Hamilton-Jacobi”-type 
equation (on a fixed domain) formulated by Osher and Sethian for a 
function in which the boundary is a particular level set. This equation 
is solved by finite difference schemes borrowed from the technology of 
hyperbolic conservation laws. The two ideas are combined by con- 
structing a smooth extension of the normal velocity off the moving 
boundary, in a way suggested by the physics of the problem. Our 
numerical experiments show the evolution of complex crystalline 
shapes, development of large spikes and corners, dendrite formation 
and side-branching, and pieces of solid merging and breaking off 
freely. Q 1992 Academic Press, Inc 

The moving boundary problems of crystal growth and 
unstable solidification have attracted considerable interest 
over the last few years. An outstanding problem of current 
research is to find the time-dependent shape of a crystal of 
a pure substance, growing from an undercooled bath of its 
liquid phase. The goal is to understand the role played by 
such physical parameters as the crystalline anisotropy, 
surface tension and molecular kinetics of the material, the 
undercooling imposed at the container walls, and the initial 
temperature distribution, and the solid shape. A good 
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review of the physics may be found in Langer [19] and 
Chalmers [6], and detailed analysis may be found in many 
papers, including Caginalp and Fife [3], Gurtin [13], 
Mullins and Serkerka [25,26], Nash and Glicksman 
[27, 281, Laxmanan [21], Verdi and Visintin [44], 
Wollkind and Notestine [45], Cahn and Hilliard [4], 
Duchon and Robert [S]. 

The physical motivation for this problem is as follows. 
Begin with a container of the liquid phase of the material 
under study, water for example. Suppose the box is 
smoothly and uniformly cooled to a temperature below its 
freezing point, so carefully that the liquid does not freeze. 
The system is now in a “metastable” state, where a small dis- 
turbance-such as dropping a tiny seed of the solid phase 
into the liquid-will initiate a rapid and unstable process 
known as dendritic solidification. The solid phase will grow 
from the seed by sending out branching lingers into the 
distant cooler liquid nearer the undercooled wall. This 
growth process is unstable in the sense that small perturba- 
tions of the initial data can produce large changes in the 
time-dependent solid/liquid boundary. 

Mathematically, this phenomenon can be modeled by a 
moving boundary problem. The temperature field satisfies a 
heat equation in each phase, coupled through two bound- 
ary conditons on the unknown moving solid/liquid bound- 
ary, as well as initial and boundary conditions. Derivations 
are given by Langer [19], Gurtin [13], Caginalp and Fife 
[3], and much asymptotic analysis has been done (see 
Langer [19], Chadam and Ortoleva [S], Strain [40], 
Kessler and Levine [17], Ben Amar and Pomeau [l], 
Caginalp and Fife [3], Fix [ll], Langer [18], Pinus and 
Taylor [31]), but no rigorous mathematical existence 
theory is availabe at present. This is because the moving 
boundary conditions explicitly involve geometric properties 
of the boundary itself, such as the local curvature and the 
normal direction, as well as the temperature field. Hence the 
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transformation into a fixed domain, which has been used to 
analyze the classical Stefan problem for melting, breaks 
down. Even asymptotic calculations are difficult, because 
surface tension constitutes a singular perturbation of the 
Stefan problem. 

Models for crystal growth have also been studied through 
numerical calculations. One approach is to solve the heat 
equation numerically in each phase and to try to move the 
boundary so that the two boundary conditions are satisfied 
(see Chorin [7], Smith [37], Kelly and Ungar [16], Meyer 
[23], Sullivan et al. [43]). However, it is difficult to impose 
the boundary conditions accurately on a time-dependent 
and complicated boundary. Thus these calculations have 
been used mainly to study small perturbations of smooth 
crystal shapes. Another approach is to recast the equations 
of motion as a single integral equation on the moving 
boundary and solve the integral equation numerically, as is 
done in Meiron [22], Strain [38], Karma [lS], Kessler 
and Levine [17], Langer [19]. This approach can yield 
more accurate results for smooth boundaries, as well as 
agreement with linear stability theory. On the other hand, a 
parametrization of the boundary must be computed at each 
time step. The curvature and normal vector are then 
derivatives of the parametrization, and these methods 
usually break down in the interesting cases where the 
boundary becomes complicated and loses smoothness, as 
discussed in Sethian [32, 333. In particular, the calculations 
presented in Strain [38] indicate that corners and cusps 
may form and pieces of the boundary may intersect; in 
either case, the boundary cannot be parametrized by a 
single smooth function. Finally, we note that most known 
numerical methods for crystal growth are difficult to extend 
to problems in three space dimensions. 

In this paper, we present a numerical method for crystal 
growth problems which avoids these difficulties and com- 
putes complex crystal shapes. Our method follows growth 
from an initial seed crystal or crystals (of arbitrary shape, 
size, and location) in a standard model which includes the 
crystalline anisotropy, surface tension and molecular 
kinetics of the material, the undercooling imposed on the 
container walls, and the initial state of the crystal/tem- 
perature system. Our numerical calculations exhibit com- 
plicated shapes with spikes and corners, topological 
changes in the solid-liquid boundary, dendrite formation, 
and sidebranching. 

The method relies on two main ideas. First, we represent 
the solid/liquid boundary as the zero set of .a function d 
defined on the whole container. The boundary is then 
moved by solving a nonlinear pseudo-differential equation 
of suggestive of a Hamilton-Jacobi on the whole container. 
This level set “Hamilton-Jacobi” formulation of moving 
interfaces was introduced in Osher and Sethian [30] and 
allows us to compute geometric properties of highly com- 
plicated boundaries without relying on a parametrization. 

Hence, the moving boundary can develop corners and cusps 
and undergo topological changes quite naturally. Second, 
we reformulate the equations of motion as a boundary 
integral equation for the normal velocity as is also done in 
Langer [19], Meiron [22], Strain [38], Kessler and Levine 
[17], Brush and Sekerka [2]. We then extend the normal 
velocity smoothly to the whole container, as required by the 
level set Osher-Sethian algorithm. These two ideas combine 
to yield a fixed-domain formulation of the equations of 
motion, which may be of analytical interest itself. Our 
numerical method is based on solving a regularization of 
this equation, with entropy-satisfying upwind differencing 
for the level set equation of motion and a fast algorithm for 
evaluating the normal velocity. The method generalizes 
immediately to higher order accurate schemes and, more 
importantly, to three-dimensional problems. This general- 
ization will be presented elsewhere (Sethian and Strain 
C361). 

The paper is organized as follows. Section 1 reviews the 
equations of motion and some of the physical background. 
Section 2 gives an overview of the numerical method, and 
Section 3 gives a flow chart. Section 4 describes the level set 
equation for moving boundaries. Section 5 discusses a fast 
algorithm for applying the integral operator which occurs in 
the boundary integral equation. Section 6 contains some of 
the many details of the numerical method, and Section 7 
presents the numerical examples. Our conclusions are 
discussed in Section 8. 

In the numerical examples, we compute the motion of a 
growing crystal under a variety of conditions. We begin with 
calculations of crystal motion under purely geometric effects 
and demonstrate the effects of crystalline anisotropy on the 
evolving crystal. We then study a crystal growing from a 
perturbed circular seed. For one set of values for the kinetic 
coefficient, surface tension, and latent heat of solidification, 
the resulting motion generates large smooth limbs. With 
another set of physical parameters, our model produces 
intricate shapes which exhibit lingering, tip splitting, and 
side branching. In all cases, these crystalline boundaries, 
even when highly complex, remain virtually unchanged 
under refinement of the numerical parameters, demon- 
strating the robustness of our numerical algorithm. In 
addition, we change physical parameters smoothly to show 
the evolution of tip-splitting and lingering. Finally, we study 
the interaction of an initial array of crystals, showing the 
complex topological changes that result from various 
choices of the physical parameters. 

1. THE MODEL EQUATIONS OF MOTION 

We wish to model the growth of a solid crystal from a 
seed in a undercooled liquid bath. We consider a model 
which includes the following physical effects: 
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(1) Undercooling. The sub-freezing temperature of 
the walls and the initial liquid state. This is the driving force 
for the growth of the solid. 

(2) Crystalline anisotropy. The tendency of the crystal 
to grow along certain axes of symmetry. The selection of a 
particular symmetry is due to the microscopic structure of 
the material; we treat it in a standard phenomenological 
way in this macroscopic model. 

(3) Surface tension. A curvature-dependence of the 
boundary temperature which regularizes the problem by 
smoothing corners and preventing excessive stretching of 
the solid/liquid boundary. 

(4) Molecular kinetics. A velocity-dependence of the 
boundary temperature, which imposes an energy penalty for 
excessively fast motion of the boundary. 

(5) Initial conditions. The shape, size, location, and 
initial growth velocity of the initial seed crystal or crystals, 
and the initial temperature distribution in the liquid and 
solid. 

We now state the equations of motion, Consider a square 
container, B= [0, l] x [0, 11, filled with the liquid and 
solid phases of some pure substance. The unknowns are 
the temperature u(x, t) for x E B, and the solid-liquid 
boundary ZJ t). 

The temperature field u is taken to satisfy the heat 
equation in each phase (see Fig. 1 ), together with an initial 
condition in B and boundary conditions on the container 
walls. Thus 

u,=Au in Boffr(t) 

4% t) = %3(x) in Bat t =0 (1.1) 

44 t) = UB(X) for XE~B. 

Since the position of the moving boundary r(t) is unknown, 
two boundary conditions on f(t) are required to determine 
u and f(t). Let n be the outward normal to the boundary, 
pointing from solid to liquid. The first boundary condition 
is the classical Stefan condition: 

[&4/&z] = -HV on f(t). (1.2) 

Here [au/an] is the jump in the normal component of heat 
flux au/& from solid to liquid across I(t), V is the normal 
velocity of f(t), taken positive if liquid is freezing, and H is 
the dimensionless latent heat of solidification, which is a 
constant. The signs of geometric quantities are chosen so 
that if au/an < 0 in the liquid phase and au/&r = 0 in the 
solid phase, then [au/an] is negative and V > 0, indicating 
that the solid phase is growing. Physically, this means that 
undercooling drives solid growth. The latent heat of 
solidification controls the balance between geometry and 

as 

au [I x =-Hv on r(r) 

u(T,r) = - c&)C - rv(n)V for P on I-@) 

f&n) = C&l -Acos(k~e +&)I 

c”(n) = cv(1 - Acos(k~e +00)) 

FIG. 1. The equations of motion and physical domain. 

temperature effects; setting H = 0 reduces the crystal motion 
to pure geometry. 

The second boundary condition on f(t) is the classical 
Gibbs-Thomson relation, modified to include crystalline 
anisotropy and molecular kinetics as well as the surface 
tension: 

u(x, t)= -Ec(n)C-E,(n) V 

for x on f(t). (1.3) 

Here C is the curvature at x on f(t), taken positive if 
the center of the osculating circle lies in the solid. The 
anisotropy functions are modeled by 

q-(n)=E=(l -A cos(k,O+&,)) 

.s,(n)=s,(l -A cos(k,8+8,)), 

(1.4) 

(1.5) 

where 8 is the angle between n and the x-axis, and sC, E “, A, 
k,, and B0 are constants depending on the material and the 
experimental arrangement. For example, if E,= = 0 (E y = 0), 
there are no surface tension (molecular kinetic) effects. For 
A = 0, the system is isotropic, while if A >O, the solid is 
k,-fold symmetric with a symmetry axis at angle f& to the 
x-axis. Typically A < 1. The equations of motion under 
study are (l.l), (1.2), and (1.3), with anisotropy functions 
given by (1.4) and (1.5). 

For appropriate initial data u0 and boundary data us, an 
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exact solution exists in which Z(t) is a line and u is an 
exponentially decaying traveling wave 

r(t)={y= V?,XE(O, l)} (1.7) 

44 Y> f) = e- Q- .,p3 -l-&,V, (1.8) 

where V is a positive constant and E,, = E,,(O). Linear 
stability of this solution has been examined in Langer [ 191, 
Chadam and Ortoleva [S], Pinus and Taylor [33], Mullins 
and Sekerka [26], Strain [41]. If .sC= .sy= 0, then this 
solution is linearly unstable with a disturbance cos(kx) 
growing like e . Vlklt If E= > 0, only a finite band of low 
wavenumbers are unstable; the high-k instability is damped 
by the introduction of surface tension. Making E y > 0 does 
not change the picture qualitatively. 

More general models have been widely discussed in the 
literature. The assumption of equal heat diffusion coef- 
ficients in solid and liquid, for example, is roughly valid only 
for certain plastic crystals like succinonitrile, and certainly 
highly invalid for the ice/water system. It is also interesting 
to treat problems in which the domain is infinite; this 
removes the effects of the finite container size and makes it 
possible to compare numerical results with some classical 
similarity solutions of the Stefan problem, for example. The 
results presented in this paper are not directly comparable 
with known exact solutions like expanding circles, so our 
only check on the method will be convergence under mesh 
refinement. However, our method can be extended to treat 
these more general problems; we explain it in this case 
mainly to simplify the explanation of what is already a 
rather complicated algorithm. 

2. OUTLINE OF THE NUMERICAL ALGORITHM 

In this section, we sketch the numerical method we use to 
solve the equations of motion. We present the algorithm in 
four steps. In the first two steps, we transform the equations 
of motion into a boundary integral formulation. In the last 
two, we describe the level set formulation for moving the 
boundary and the necessary extension of V. The details of 
each step may be found in the sections that follow. However, 
the fundamental philosophy behind the algorithm is most 
easily conveyed through a series of figures. 

In Fig. 2a, we show a typical solid/liquid boundary. 
According to Eqs. (1.1 )-( 1.6), the temperature field u must 
satisfy the heat equation in each phase, as well as two 
boundary conditions on the phase boundary. In Steps 1 and 
2, we transform the equations of motion into a single 
boundary integral equation on the moving boundary (see 
Fig. 2b). Thus, we transform equations of motion which 
require computation of the temperature field u on the whole 
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FIG. 2. The flow of the algorithm: (a) position of solid liquid bound- 
ary in B; (b) boundary integral formulation; (c) level set formulation; 
(d) extension of velocity field to level set formulation. 

domain into an equation which involves only the moving 
boundary and its previous history. 

In Step 3, we represent the boundary r(t) as the level set 
{ ~5 = 0) of a function 4 defined on all of B (see Fig. 2~). We 
construct a nonlinear pseudodifferential equation which 
evolves 4 in such a way that the zero set { 4 = 0}, at each 
time t, is the moving boundary r(t) (see Fig. 2d). To do this, 
in Step 4 we construct a “speed function” F, which is equal 
to the normal velocity V on r(t) and smoothly extends V to 

all to B. We then move all the level sets of 4 with normal 
velocity F. The resulting level set equation for 4, which is 
reminiscent of a Hamilton-Jacobi equation, may be solved 
numerically by finite difference schemes borrowed from 
hyperbolic conservation laws. A major advantage of this 
formulation is that the equation for 4 can be solved on a 
uniform mesh on the box B; the level sets are moved without 
constructing them explicitly. 

We now describe the algorithm in more detail. 

Step 1. Subtraction of Initial and Boundary Conditions 

Recall the equations of motion (l.l)-( 1.6). The tem- 
perature field u and moving solid/liquid boundary r(t) 
satisfy 

U,=dU in B--T(t) 

4-T t) = uo(x) for t=O, (2.1) 
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4x, t) = UB(X) for xCC?JB 

[au/an] = -HV on r(t) (2.2) 

u(x, t)= -EC(n)C--EY(n)v 
for x on r(t). (2.3) 

First, we subtract the temperature field due to the initial 
conditions u0 and boundary conditions us. Let U(x, t) be 
the solution to the heat equation 

U,=AU in B 

U(x, 0) = uo(x) at t=O (2.4) 

U(x, f) = u,(x, f) for xEaBand t>O. 

Let W= u - U. Then W satisfies 

W,=AW in B-T(t) 

W(x, t)=O at t =O, (2.5) 

W(x, t) = 0 for XEI~B 

[awlan] = -HV on T(r) (2.6) 

W(x, t) = -&c(n)C- &v(n) v 
- w, t) for x on r(t). (2.7) 

Equations (2.5)-(2.7) are equivalent to the original equa- 
tions of motion. Given the solution U, at any time we can 
add W to U to produce the solution u to the original 
problem. The “free” temperature field U(x, t), which is 
defined on a fixed domain, may be found analytically for 
simple initial and boundary conditions, or by numerical 
calculation in practical situations. 

Step 2. Transformation to a Boundary Integral Equation 

The next step is to transform Eq. (2.5)-(2.7) into a 
integral equation on the boundary r(t). We use the kernel 
K of the heat equation to express the solution W to 
Eqs. (2.5)-(2.6) as a single layer heat potential. Given a 
function V on 

the single layer heat potential SV is defined for (x, t) in 
BxCO,Tlby 

W-T t) = j; s,,,) K(x, x’, t - t’) V-(x’, t’) dx’ dt’. (2.8) 

Here the x’ integration is over the curves comprising r(t’), 
and the Green function K of the heat equation in the box 

B = [0, l] x [0, l] with Dirichlet boundary conditions on 
the box walls is given by 

K(x, x’, t’) = f f eC(kf+ki)n2r sin(k,rcxi) 
k,=l kz=l 

x sin(k,7rx2) sin(k,nx;) sin(k,nx;) (2.9) 

=& 2 f c c 0102 
k,=-m kz=-cc a,=+1 cq=*l 

x e- [(xl --blxi -=I)~+ (-a2+2k2)21/4f, (2 10) 

where x = (x1, x2) and x’ = (xi, xi). The first expression for 
K can be calculated by Fourier series, the second by the 
method of images. The equivalence of the two is a special 
case of the Poisson summation formula (Dym and McKean 
C91). 

The function SV(x, t) defined by Eq. (2.8) is a continuous 
function on B x [0, T], vanishing for t = 0 or x on aB, and 
satisfying the heat equation everywhere off rT. Across r(t), 
however, SV(x, t) has a jump in its normal derivative 
equal to V. Thus, W(x, t) = H. SI’(x, t) is the solution to 
Eqs. (2.5)(2.6). All that remains is to satisfy the second 
boundary condition Eq. (2.7). This is equivalent to the 
boundary integral equation 

c,(n)C+ cV(n) V+ U 

+Hs’.i K(x, x’, t - t’) 
0 l-(f) 

x T/(x’, t’) dx’ dt’ = 0 (2.11) 

for x E r(t). Equation (2.11) is an integral equation for the 
normal velocity of the moving boundary. We note that the 
velocity V of a point x on r(t) depends not only on the 
position of r(t) but also on its previous history. Thus, we 
have stored information about the temperature off the mov- 
ing boundary in the previous history of the boundary. 

Step 3. Level Set Formulation of Moving Boundaries 

Numerical approximations to the boundary integral 
equation based on marker particle techniques have been 
used to solve solidification problems similar to the one 
under investigation (see Meiron [22], Strain [38], Kessler 
and Levine [ 171, Karma [IS], Brush and Sekerka [2] ). In 
this approach, the boundary r(t) is represented by a set of 
marker points. A discretized version of the integral equation 
is then solved for the velocity of each point, and this velocity 
is then used to update the positions of the markers. There 
are several difficulties with this approach. First, at each time 
step one must evaluate an integral over all previous history. 
Thus, given 1 < i< M points on the curve at each of 
1 d n < N time levels n At, it costs O(M2N2) operations just 
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to evaluate SV at the given points. This becomes very 
expensive for large M and N, as documented in Strain [ 381 
and Greengard and Strain [12]. Independent of the 
expense, fundamental problems with marker particle algo- 
rithms arise as the moving boundary r(t) becomes more 
complex (see Sethian [32, 331). Sharp corners and cusps 
can develop which are difficult to resolve with marker par- 
ticles, and instabilities often result when the boundary 
becomes interesting. Furthermore, it is difficult to use 
marker particles when the boundary changes topology, for 
example, when two boundaries collide or a piece of solid 
breaks off. Finally, the extension to three dimensional 
problems is challenging. 

An alternative to marker particles for moving boundaries 
is provided by the level set technology introduced in Osher 
and Sethian [30]. With this approach, a complex boundary 
can be advanced. Sharp corners and cusps are handled 
naturally, and changes of topology in the moving boundary 
require no additional effort. Furthermore, these methods 
work in any number of space dimensions. Recently, this 
technique has been applied to interface problems in mean 
curvature flow [33], singularity formation and minimal 
surface construction [34], and compressible gas dynamics 
[24]. In addition, theoretical analysis of mean curvature 
flow based on the level set model presented in Osher and 
Sethian [30] has recently been developed in [lo]. 

We now describe the level set algorithm in the general 
case when a curve or union of curves f(t) moves with speed 
V normal to itself. The essential idea is to construct a 
function 4(x, t) defined everywhere on B, such that the level 
set { 4 = 0} is the set r(t); that is, 

r(t) = {x$(x, t) =O}. (2.12) 

We now derive a partial differential equation for 4, which 
holds on Bx [0, T]. Suppose we can construct a smooth 
function F(x, t) defined on all of B such that 

V(x, t) = F(x, t) for x E r( t ). (2.13) 

Then V = F on Tr, and we call F a smooth extension of V off 
r(t). We shall postpone until the next section the extension 
for the case of crystal growth. 

What is the equation of motion for d? Obviously, this 
equation must reduce to normal propagation by speed V on 
the level set 4 = 0. Suppose we initialize 4(x, 0) such that 

4(x, 0) = + distance from x to r(t), (2.14) 

where the minus (plus) sign is chosen if x is inside (outside) 
the initial boundary r(t = 0). Now consider the motion of 
some level set {4(x, t) = C}. Here, we follow the derivation 

given in [24]. Let x(t) be the trajectory of a particle located 
on this level set, so 

W(t), t) = c. (2.15) 

The particle speed ax/& in the direction n normal to r(t) is 
given by the speed function F. Thus, 

ax 
--n=F, 
at 

(2.16) 

where the normal vector n is given by n = V&lV#l. By the 
chain rule, 

(,+$hJkO 

and substitution yields 

d,+FIVbI =O 

4(x, t = 0) = given. 

Equation (2.18) yields the motion of Z(t) with normal 
velocity V on the level set 4 = 0. We refer to Eq. (2.18) as the 
level set “Hamilton-Jacobi” formulation. It is not strictly 
a Hamilton-Jacobi equation except for certain speed 
functions F, but the flavor of Hamilton-Jacobi equations is 
present. 

The initial value problem (2.18) can be solved numeri- 
cally by finite difference schemes. Because 4 can develop 
corners and sharp gradients, numerical techniques 
borrowed from hyperbolic conservation laws are used to 
produce upwind schemes for 4 which track sharp corners 
accurately and employ the correct boundary conditions at 
the edge of the computational box. These schemes are 
presented in Section 4. 

Step 4. Construction of the Speed Function F 

We now describe how to extend the velocity V to a 
globally defined speed function F. Such an extension is 
necessary in order to use the level set formulation. 

The most natural extension makes direct use of the 
integral equation (2.11) namely, 

E,(n)C+ Ey(n) V+ U 

+“idLW 
K(x, x’, t - t’) 

x V(x’, t’) dx’ dt’ = 0 (2.19) 

for x E r(t). Each term in Eq. (2.19) can be evaluated 
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anywhere in B, once V is known on r(t’) for 0 d t’ 6 t and 
4 is known on B. Thus, given the set f(t), plus all its previous 
positions and velocities for 0 < t’ 6 t, one could first solve an 
integral equation to find the velocity Yfor all points on f(t) 
and then find F(x, t) by solving the equation 

EC(n)c+Ev(n)m t)+ w, t) 

+ H 1; s,(,,) ax, x’, t - t’) 
x V(x), t’) dx’ dt’ = 0 (2.20) 

for 1; throughout B. Here, x is a point in B, while C = C(x, t) 
is the curvature, and n is the outward normal vector to the 
level set passing through x; 

c=v. g =V.n 
c > 

+v(s 
(2.21) 

n=$q 

and these expressions make sense everywhere in B. The 
speed funcion F given by Eq. (2.20) is defined throughout B 
and equal to V on the solid/liquid boundary f(t). 

For our purposes, it is easier to work with a regulariza- 
tion of the speed function. We split the single layer heat 
potential into a history part Sd V and a local part S, V as 
follows: 

wx> t) = y lrct,, K(x, x’, t - t’) V(x’, t’) dx’ dt’ 

K(x, x’, t - t’) V(x’, t’) dx’ dt’ 3. OUTLINE OF THE ALGORITHM 

~S,V/+S,V. (2.22) 
In this section, we describe the general flow of the algo- 

rithm from one time step to the next. We have a pair of 
equations for the speed function F and the level set function 
4 defined throughout B, namely Here 6 is a small regularization parameter. Heuristically, we 

try to separate the local part, which is causing the jump in 
the normal derivative of the potential, from the history part 
which is smooth and independent of the current velocity. 
In Section 5, we show that the local part S, V can be 
approximated by 

s, V(x, ?) = Js/71 V(x, t) + o(63’2) (2.23) 

at points x on r(t). The history part Sd V depends only on 
values of V at times t’ bounded away from the current time, 
since t’ d t - 6 in S6 V. Since the leading term fi V in the 
expression for the local part S, V varies smoothly in the 
direction normal to the curve if V does, this suggests the 

following regularized extension of V. Let F be defined 
everywhere in B by 

~c(n)C+~,(n) F(x, t) + W, t) 

+ H $j7t F(x, t) + HSB Y= 0. (2.24) 

We can then solve this equation for F to produce 

-1 
F= 

dn)+ffJG 
[Ec(n)C+ U+HS5V]. (2.25) 

Thus, F is an explicit function of 4, the velocity at previous 
times t’ < t - 6, and the free temperature field U. 

Note that F is defined even if E V = 0. Furthermore, F is 
equal to V+ O(S3j2) on f(t), and does not have a boundary 
layer as we move off the curve, as long as 6 is not too small. 
Finally, in the limit 6 -+ 0, Eq. (2.25) reduces to Eq. (2.20) as 
it should. 

Remark. We have reduced the equations of motion, 
with an O(a3j2) error, to a pair of equations on a fixed 
domain B: 

&,(n)C+.s,(n)F+ U(x, t) 

+HJ$iF+HS,,V=O (2.26) 

4, + F IV4( = 0. (2.27) 

These equations constitute a fixed-domain approximation 
of the crystal growth equations of motion. No analysis of 
the original equations of motion has been carried out, 
mostly because there is no fixed-domain formulation. An 
approximate fixed-domain formulation may be a viable 
substitute. 

.+(n)C+&,(n)F+ U(x, t) 

+H&F+H&V=O (3.1) 

q5,+FIV&=O. (3.2) 

Here, the curvature C and the normal vector n are func- 
tionals of 4. U is computed by solving the heat equation on 
B. Sd V is computed from the previous history of r(t). 

To describe the algorithm, we imagine that at time step 
n At we have the following information: 

(1) the level set function #z defined at discrete grid 
points xii 
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(2) the free temperature field 17; defined on the same 
discrete grid 

(3) the previous positions of the boundary Z(m dt), 
m = n - 1, n - 2, . . . . n - d (where d= h/At), stored as points 
on each curve. 

Given this information, we proceed from one time step to 
the next as follows: 

ALGORITHM. 

Step 1. At each grid point xii, compute the extended 
speed function F; from (3.1). This is done as follows: 

(a) Expressions for the discrete curvature C, and 
normal vector nij may be computed from the 
discrete level set function 4; without explicit 
construction of the particular level set passing 
through the grid point xii (see Section 4). 

(b) The history part S6 V is updated by using the 
stored boundary at previous time levels, This part 
of the calculation is described in Section 5. 

Step 2. Calculate 4;’ ’ from 4; and F; using the 
upwind, finite difference scheme described in Section 4. 

Step 3. Calculate U;+ ’ from Us by solving the finite 
difference approximation to the heat equation discussed in 
Section 6.A. 

Step 4. Find point on the new boundary r((n + 1) At) 
by constructing the level set 4 = 0 from di”, (see 
Section 6.C). Store the position x and velocity V of each 
point, found by interpolating F from the values on the grid. 
Note that these points on the boundary do not move. They 
serve only as quadrature points for updating the history 
integral S6 V. 

Step 5. Replace n by n + 1 and return to Step 1. 

In Section 4, we present the details of the level set algo- 
rithm and in Section 5 we give the details of the evaluation 
of the history part of the single layer potential. Section 6 
presents other numerical details. 

4. SOLVING THE LEVEL SET EQUATION 

We have reformulated the problem of moving r(t) with 
normal velocity V by representing r(t) as the zero set 

z-(t) = {x 1 fj(x, t) = O}. (4.1) 

Here 4 solves the initial value problem 

d,+f’IV4 =O 
4(x, t = 0) = f distance from x to r( t = 0) 

(4.2) 

and F is a smooth extension of V off r(t). There are at least 
two advantages of this level set formulation compared to 

methods based on parametrizing r(t). The first is that 
4(x, t) always remains a function, even if the level surface 
4 = 0 corresponding to the boundary T(t) changes topol- 
ogy, breaks, merges, or forms sharp corners. Parametriza- 
tions of the boundary become multiple-valued or singular in 
these cases. As an example, consider two circles in R2 
expanding outward with normal velocity V= 1 (Fig. 3a). 
The initial function 4 is a double-humped function which is 
continuous but not everywhere differentiable (Fig. 3b). As 4 
evolves under Eq. (4.2), the topology of the level set 4 = 0 
changes. When the two circles expand, they meet and merge 
into a single closed curve with two corners (Fig. 3~). This is 
reflected in the change of topology of the level set 4 =0 
(Fig. 3d). 

Another advantage of this formulation concerns numeri- 
cal approximation. Because 4(x, t) remains a function as it 
evolves, finite difference approximations may be used to 
approximate the spatial and temporal derivatives. For 
example, given a uniform mesh with spacing h, with grid 
nodes xii and time step At, let 4; approximate &x,, n At). 
An approximation to Eq. (4.2) is given by 

qy.’ l - 4;. 

At 
L +F”, IV/&q =o. 

Here, we have used forward differences in time, and some 
appropriate finite difference operator V,dz. to approximate 
the spatial gradient. In this section, we shall discuss how 
accurate and efficient approximations V,d; are obtained by 
exploiting the close link between Hamilton-Jacobi equa- 
tions and hyperbolic conservation laws. Details may be 
found in [30]. 

a b I 

Level Set 4 = O\ x 

Level Set 4 = 0 

FIG. 3. Formulation of level set approach: (a) propagation of two 
circles; (b) initial value of level set function; (c)merger of propagating 
circles; (d) change of topology of level set 4 = 0. 
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A. Corner Formation and the Entropy Condition 

To illustrate, suppose we wish to follow an initial cosine 
curve r(t = 0) propagating with normal velocity 
V = 1 - EC, where C is the local curvature of the boundary. 
The curvature of the level curve passing through a point 
(x, y, t) is given by 

a 

Once again, the minus sign occurs because we have 
initialized the surface so that Vd points inwards, and we 
want C to be positive for a circle. The smooth extension of 
V to F is straightforward, and Eq. (4.2) becomes 

(4.5) 
4(x, y, t = 0) = f distance from (x, y) to r( t = 0). 

As shown in [32], for E > 0, the parabolic right-hand side 
diffuses sharp gradients and forces 4 to stay smooth for 
all time. This is not true for E = 0 and F= 1. In Fig. 4, we 
show the level set 4 = 0 corresponding to the propagating 
boundary r(t). For E = 0, the boundary moves with unit 
speed, and a corner must develop, since the two sides come 
together at a constant rate (see Fig. 4a). Thus, singularities 
in the curvature C develop from smooth initial data. 

What happens once a corner develops? It is not clear how 
to propagate in the normal direction, since the derivative is 
not defined at the corner. One possibility is the “swallow- 
tail” solution found by letting the boundary pass through 
itself, see Fig. 4b. However, the boundary consists only of 
those points located a distance t from the initial curve, 
which is the Huygens’ principle construction. Roughly 
speaking, we may obtain this solution by removing the 
“tail” from the “swallowtail.” In Fig. 4c, we show this alter- 
native “weak” solution. Another way to characterize this 
weak solution is through the following “entropy condition,” 
see [32]: If the boundary is viewed as a burning flame, then 
once a particle is burnt it stays burnt. Careful adherence to 
this stipulation produces the same weak solution as the 
Huygens’ principle construction. Furthermore, this physi- 
cally reasonable weak solution has an equally appealing 
mathematical quality. It is the formal limit of the smooth 
solutions for E > 0 as E -+ 0 and the curvature term 
vanishes [ 321. 

Thus, our goal is to produce approximations to the 
spatial derivative that (1) do not artificially smooth sharp 
corners and (2) pick out the correct entropy solution 
when singularities develop. Our schemes are motivated by 
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FIG. 4. Comer formation and the entropy condition: (a) propagating 
curve until singularity forms; (b) entropy-violating swallowtail solution; 
(c) entropy-satisfying solution from Huyghen’s construction. 

the fact [32] that our entropy condition for propagating 
boundaries is identical to the one for hyperbolic con- 
servation laws, where stable, consistent, entropy-satisfying 
algorithms have a rich history. Our next step is to exploit 
this link. 

B. Hamilton-Jacobi Equations and Hyperbolic Conservation 
Laws in One Dimension 

As motivation, consider the one-dimensional version of 
the level set equation, with constant normal velocity V= 1. 
Then Eq. (4.2) becomes a standard Hamilton-Jacobi 
equation 

9, + H(4,) = 0, where H(#,) = - (d,T)1/2 

6(x, 0) = given. 
(4.6) 

Let u = 4,. Taking the derivative of Eq. (4.6) with respect to 
x, we have 

u,+ CH(u)l,=O, where H(u) = - (u’)I/~ 

u(x, 0) = given. 
(4.7) 

Equation (4.7) is a single scalar hyperbolic conservation law 
in one space variable. Solutions can develop discontinuous 
jumps, known as shocks, even with smooth initial data 
[20]. Jumps in the slope u = 4, are equivalent to corners in 
I$ [32]. In order to make sense of the solution after shocks 
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form, we study an integral version of the conservation law 
(4.7) which admits discontinuous solutions. Thus, consider 
an arbitrary interval [a, 61. We integrate both sides of 
Eq. (4.7) to produce 

f 1” 24(x, t) dx = H[u(a, t)] - H[u(b, t)]. (4.8) 
a 

We say that u is a weak solution of the conservation law if 
it satisfies the above integral equation. Note that u need not 
be differentiable to satisfy the integral form of the conserva- 
tion law. 

How can we be sure that a numerical algorithm will 
approximate the correct, entropy-satisfying solution to 
Eq. (4.8)? We begin with a definition, which is simply a 
numerical version of Eq. (4.8): 

DEFINITION. Let u’ be the value of u at mesh point i Ax 
at time n dt. A three-point difference scheme is said to be in 
conservation form if there exists a function g(u,, u2) such 
that the scheme can be written in the form 

where g(u, U) = H(u). (4.9) 

This definition is natural; the scheme must approximate 
the hyperbolic conservation law, subject to the consistency 
requirement g(u, U) = H(u). In order to guarantee that the 
scheme picks out the correct entropy-satisfying weak solu- 
tion, we require monotonicity, that is, that u;” be an 
increasing function of the arguments ~1~ i, ~1, u;+, . We can 
now state the main fact: A conservative, monotone scheme 
produces a solution that satisfies the entropy condition. 

How do we convert Eq. (4.9), which is a scheme for the 
slope U, into a scheme for 4 itself7 We begin by writing 
Eq. (4.6) with a forward difference in time, namely, 

&+‘=#;-AtH(u). (4.10) 

Since the numerical flux function g approximates H, the 
solution to Eq. (4.10) may be approximated by 

x&y-Atg on-17-l &,I-& 
Ax , Ax 

> 
7 (4.12) 

= 47 - At g(D; di, 0,’ $i), (4.13) 

where g is an appropriate numerical flux function and we 

have used the standard definitions of the forward and back- 
ward difference operators, namely, 

(4.14) 

Finally, we need an appropriate numerical flux function 
g. In the special case where H(u) may be written as a 
function of u’, i.e., H(u) = f(u’) for some functionf, we may 
use the Hamilton-Jacobi flux function given in [30]: 

d”i- l/23 Ui+ l/2 ) = g(D; di, 0,’ 4i) 

=f((max(D; 4, 0))2 + (min(Dz 4, 0))‘). 
(4.15) 

This conservative monotone scheme is an upwind method in 
that it differences in the direction of propagating charac- 
teristics. This is important, since we must impose boundary 
conditions on the walls of a finite-sized computational box. 
An upwind scheme automatically differences in the out- 
ward-flowing direction at the box walls if the boundary is 
expanding, thus information flows out. In the special case 
when V= 1, so thatf(u2) = -(u’)“~, we have 

&“I = 47 -At ((max(D; 4, 0))2 + (min(D,+ 4, O))2)1’2. 
(4.16) 

This algorithm produces the correct entropy-satisfying 
weak solution to the moving boundary problem. More 
details about shock schemes and conservation laws may be 
found in [29]. 

C. Multimensional Problems and More Complicated Speed 
Functions 

We now extend the previous discussion to problems in 
more than one space dimension. Recall that we are solving 
the “Hamilton-Jacobi”-type equation 

&+FIVqhI =O. (4.17) 

We begin by decomposing F into two components: 

F=F,+Fo. (4.18) 

Here, FA is an advection term containing that part of the 
velocity which is independent of the moving boundary, and 
FG contains those terms which depend on geometric proper- 
ties of the boundary, such as the curvature and normal. We 
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begin by splitting the influence of F, and rewrite Eq. (4.17) 
as 

4t= - (FA IV41 + Fo IV41 )- (4.19) 

In two space dimensions, one can easily extend the scheme 
given in Eq. (4.12) by differencing in each direction to 
produce 

4;’ ’ = q5; - F, At ((max(D; dii, O))* 

+ (min(DZ ii,, O)Y+ (max(DJ: 4v, 0))’ 

+ (min(Dt d,,, O))*)‘j2 - At F, IV&. (4.20) 

Here, we have not approximated the final term F, IVq5l; one 
may use a straightforward central difference approximation 
to this term. This is the first-order multidimensional 
algorithm described in [30]. 

In Fig. 5, we show this technique applied to the case of a 
star propagating outwards with speed F = 1 - EC, where C 
is the curvature as in Eq. (4.5). Here, we take At = 0.00025 
and a mesh size of 160 points in each direction on a unit 
box (Ax = dy = l/159). The curve evolves smoothly and 
becomes circular as it evolves. The orientation of the under- 
lying grid used to advect the circle is difficult to detect. 

F. “Grid-Free” Extension to Multi-Dimensions 

Unfortunately, when the speed function F is more 
complicated, the above extension to multi-dimensions 
is inadequate. In particular, for the anisotropic speed 
function 

F= 1 -s&l -A cos(k,8+8,))C, (4.21) 

which is the crystal growth speed function given in 
Eq. (2.25) in the limit H+ 0, 6 + 0, the above method 

FIG. 5. Expanding star, F(K) = 1 -0.01 K. 

a 

FIG. 6. Grid effects in anisotropic motion: (a) grid effects: sixfold 
symmetry, phase angle = 0.0; (b) grid effects: sixfold symmetry, phase 
angle = 22.5”; (c) grid effects: sixfold symmetry, phase angle = 45.0”. 

suffers from grid effects. In Fig. 6, we show the effects of 
the algorithm applied to a circle moving under a sixfold 
anisotropy (k, = 6) speed function. Here, we have taken 
EC=O.Oi, & y = 0.00. In Fig. 6a, the phase angle 8, = 0, thus 
the preferred modes of growth are along the axes at O”, 60”, 
and 120”. In Fig. 6b, the phase angle is shifted to 0,, = 7c/16; 
thus the preferred growth direction axes are shifted accor- 
dingly. In Fig. 6c, the phase angle is shifted to Q0 = n/8. It is 
clear that grid effects are pronounced, as shown in the asym- 
metry of the evolving shapes. 

This problem arises because of our construction of the 
length of the gradient. We have used the approximation 

IV41 = (4: + 4y2 
z ((max(D; 4, O))‘+ (min(D,f 4, 0))’ 

+ (max(D, 4, 0))2 + (min(D: 4, O))2)“2. (4.22) 

As the family of level sets sharpen along the lines of 
anisotropy, they develop sharp corners. At those corners, 
the approximation of jV& is biased with respect to the grid 
lines. As can be seen from Fig. 6, when the preferred lines of 
growth do not lie along the x and y axis, the problem is 
substantial. 

Grid effects may be significantly diminished by the 
following alternative multi-dimensional scheme. At each 
grid point, we find the normal vector to the level curve 
(4 = Const) passing through that grid point by averaging 
the one-sided limits of the normal vectors. We then perform 
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one-dimensional upwind differencing in the calculated 
normal direction. 

We now explain this strategy in detail. If 4 is smooth, then 
the unit normal at point (x,, y,,) to the level curve passing 
through (x,,y,) is Vd(x,)/lV+(x,,)l. However, when 4 
develops corners, care must be taken in the construction of 
this normal, since the speed function F is highly sensitive to 
the exact direction of the normal in the anisotropic case 
given by Eq. (4.21). At a corner, the direction of the normal 
undergoes a jump. This suggests the following technique. 
We form the one-sided difference approximation to the unit 
normal in each possible direction. We then average all four 
limiting normals to produce the approximate normal at the 
corner, see Fig. 7: 

CD,+ dii, D; d&l 
+ (CD.: hjJ2 + (0; &)2)1’2) 

(D; bij, D; 4J 
+ ((D, &I2 + (0; c&,-)*)“~) 

CD; dp D, dij) 
+ ((D; c&J2 + CD.; hj)2)“2) 1 . 

(4.23) 

If any of the one-sided approximations to IV41 in the. 
denominator vanish, we ignore that component and 
re-weight accordingly. This discrete unit normal vector 
ng = (a,, pii) is then used to compute 8, in the anisotropy- 
based speed function Fv given in Eq. (4.21). 

(i-lj) ii 

/ 

\ 
(i+lJ) 

\ 
\ \ 

The discrete unit normal nq calculated above can then be 
used to construct a relatively “grid-free” multi-dimensional 
scheme for moving boundaries. We begin by constructing 
the forward and backward differences, approximating the 
directional derivative in the direction no at the grid point 
(i Ax, j Ay ), namely, 

D+i, =cwx+A s iv, j Ay + As pii) - dii 
I/ AS 

(4.24) 

D-~,=~“.-~(iAx-AsBi,,jAy-AsPd) 
As 

(4.25) 

with step size As = min(Ax, Ay). The values of 4 in between 
grid points are found by interpolation from neighboring 
grid values. The above forward and backward difference 
operators are used to construct an upwind approximation 
to the gradient based on the one-dimensional scheme given 
in Eq. (4.12), namely, 

qS;+‘=q$-F,,,At 

x (max(D-4+ 0)2 + min(D+@ii, O)*))“’ 

-At CFci, IV41 J. (4.26) 

To summarize, we first construct the normal vector and 
then use one-dimensional upwind differencing in the 
calculated normal direction. Note that this methodology 
may be extended to any number of space dimensions. Equa- 
tion (4.26) is the scheme used in this paper. 

a 

C 

FIG. 8. Modified approach: (a) Modified method: sixfold symmetry, 
phase angle = 0.0”; (b) Modified method: sixfold symmetry, phase 

FIG. 7. Construction of modified method. angle = 22.5”; (c) Modified method: sixfold symmetry, phase angle = 45.0”. 
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L 

FIG. 9. Calculation of motion under various crystalline anistropies: 
(a) Threefold symmetry; (b) Fourfold Symmetry; (c) Fivefold symmetry; 
(d) Sixfold symmetry; (e) eightfold symmetry; (f) tenfold symmetry 

In Fig. 8, we show the results of this new algorithm 
applied to the previous example of a circle using the fourfold 
anisotropy speed function. In Fig. 8a, the phase angle 0 = 0; 
thus the preferred modes of growth are along the x and y 
axes. In Fig. 8b, the phase angle 8 = 7c/8; thus the preferred 
modes of growth are along the diagonals. In both cases, the 
circle is transformed into a square, and the grid effects are 
considerably diminished. In Fig. 9, we show this modified 
algorithm applied to problems with threefold, fourfold, 
fivefold, sixfold, eightfold, and tenfold symmetries. In each 
case, grid effects have been essentially eliminated by using 
the modified approach. 

5. RAPID EVALUATION OF THE 
SINGLE LAYER HEAT POTENTIAL 

The boundary integral formulation of the problem 
required the evaluation of the single layer heat potential 

SV(x, t)= ’ ss K(x, x’, t - t’) V(x’, t’) dx’ dt’, (5.1) 
0 l-(C) 

on a M x M grid in B. The heat kernel K is given (see Dym 
and McKean [9] and Strain [39]), by 

K(x, x’, t)= 2 5 ~-‘k:+k:fn2zsin(k,nx,) 
k,=l kz=l 

x sin(k,nx*) sin(k, XX’,) sin(k,zx;) (5.2) 

x e- [(XI -o(.T~ - 2k1)*+ (~2-02.~-22k2)~1/4f 
(5.3) 

A straightforward numerical approach to calculating 
ST/(x, t) is to use a quadrature formula to approximate the 
integral. To compute the values of SV at M2 points at N 
times n dt would then require O(M3N2) work if there are 
O(M) points on f(t) at each time t. Since complicated 
moving boundaries can develop in solidification problems, 
accurate approximations require large values for M 
and N and straightforward evaluation schemes become 
prohibitively expensive, as shown in [ 38, 121 for evidence of 
this. 

As an alternative, we can use a fast algorithm which 
evaluates SV(x, t) on a M x M grid in O(M ‘) work per time 
step, to any specified precision. The constant in O(M2) 
depends on the precision and the smoothness of the data 
f(t) and V. The basic idea behind this algorithm is as 
follows. Suppose we split the time integral in SV(x, t) at a 
cutoff time 6: 

wx, t) = 1;-” s,,,,) K(x, x’, t - t’) V(x’, t’) dx’ dt’ 

“, ” 

+ Jr.- 6 ?,,,, K(x, x’, t - t’) V(x’, t’) dx’ dt’ 

=SgV+SLV. (5.4) 

The key to evaluating Eq. (5.4) is to use the two different 
expressions, (5.2) and (5.3), for the kernel K. Substitution of 
Eq. (5.2) into the history part S6 V yields a Fourier series 
which can be approximated by a small number of terms. In 
addition, the Fourier coefficients of S, V can be updated in 
0( M 2, work per time step, using Rokhlin’s non-equidistant 
fast Fourier transform (Rokhlin, unpublished manuscript; 
Strain [39]). On the other hand, substitution of the method 
of images sum (5.3) into the local part S, V produces a 
rapidly convergent sum, which we can approximate by 
Taylor series expansion of the first term. 

A less robust fast algorithm which evaluates SV(x, t) for 
x in r(t) using M quadrature points on r(t) and requiring 
only O(MN) work for N time steps has been constructed in 
[ 121. However, we do not need this algorithm here, because 
we are evaluating only S6 V on a M x M grid and we are 
evaluating it with O(M) quadrature points given in f(t’). 
This simplifies the problem considerably. 

5x1 ‘9R.2.5 
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A. The History Part S, V 

We begin with the history part S6 V. We have 

K(x, x’, t - t’) V(x’, t’) dx’ dt’. 

(5.5) 

The Fourier series for K is given by 

K(x, x’, t - t’) 

x sin(k,rrx*) sin(k,rrx,) sin(k,rc~~) sin(k,zx;), (5.6) 

where lkl* = k: + kz. Now 6 < t - t’ by construction, and 
therefore we may bound the summands in Eq. (5.6) by 
e-X2’ki2g. Thus, the Fourier series converges quickly for 
6 > 0 and can be used to provide a good approximation to 
the history part. Inserting Eq. (5.6) into the history part 
Eq. (5.5) gives 

x sin(k,rcx,) sin(k2rcx2) sin(k,nx;) 

x sin(k,rcx;) V(x, t’) dx’ dt’. (5.7) 

Interchanging summation and integration gives a Fourier 
series representation 

s, V(x, t) (5.8) 

= f f ck(t, 6) sin(rck,x,) sin(zk,x,) 
k,=l kz=l 

(5.9) 

with COefiiCientS ck(t, 6) given by 

ck(t, S) =4 Jb’-” lrI,,) e-n21k12(f-r’) sin(rck,x;) 

x sin(nk,x;) V(x’, t’) dx’ dt’. (5.10) 

Here, x = (x,, x2), and x’ = (xi, x;). For 6 > 0, this series 
converges rapidly. We first note that since 6 < t - t’, the 
coefficients C,(t, 6) decay like Gaussian functions of IkJ, 

ck(t, 6)<4e-“2’k’2S [VII, (5.11) 

where 

) V/) 1 = j;-’ jrct,) 1 I/(x’, t’)l dx’ dt’. (5.12) 

We can now use the integral test to bound the error E, 
incurred by truncating the series (5.9) after the first p* terms: 

f f + f 
k,=l k2=p+l kL=p+l kz=l 

x Ick(t, 6) sin(rck,x,) sin(rtk,x,)l 

<8 IV(, 1 jOUe~n2k2ddkjme~~2k2”dk 
0 1 

<81VI, 
[ 

&;*;j o(.q (5.13) -- = 

if n2p26 > 1. The final bound is derived by observing that 

e (5.14) 

if z2p26 >, 1. This error bound corrects an erroneous state- 
ment in [ 121. 

The bound given in Eq. (5.14) shows that the series con- 
verges exponentially fast as (p + l)* 6 -+ co, even if 6 + 0. 
Thus the Fourier series truncation error requires that 
dp*+mas6+Oandp+co. 

At this point, it is not obvious that evaluating the series 
given in Eq. (5.9) is any less expensive than the original 
O(N*) cost of history-dependence. This is because at each 
time t every coefficient ck(t, 6) must be computed by 
integrating from 0 to t - 6. Fortunately, the coefficients can 
be updated one step at a time by recursion, rather than 
recomputed all the way from t = 0. To simplify notation, 
define Mk(t’) by 

Mk(f’)= j sin(k, nx;)(k2nx;) V(x’, t’) dx’. (5.15) 
r(f) 

Then we have the recursion relation 

“-“) Mk(t’) dt’ 

+4 j’-” ,-n21k12(t-r’) Mu dt’ 
I--6-Al 

s 

t-At-6 

=4e- n2/kf2& e-~21W2(~-~‘) M,(f) dt’ 

0 

+4 j’-” e-~21k12(~-~‘) Mk(f) dt’ 
r-S-Al 

=e -rr2’k’2Ar C,(t - At, 6) 

+4 j’-” ,-.*tk12(t-f) Mk(f) dt’. 
f--b-Al 

(5.16) 

Thus ck( t, 6) can be computed from ck( t - At, 6), given the 
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values of the moment Mk(l’) over the time step. Since this 
requires constant work per time step, we can evaluate 
Ck(n At, 6) for n = 1, 2, . . . in 0( NW,) work, where W, is the 
work involved in computing the moment integrals Mk(f’). 
This eliminates the 0( N *) cost of the history-dependence. 

To achieve our goal of O(M’) work per time step, we 
choose p = O(M) so we have O(M *) coefficients C, to 
evaluate. Then we can evaluate each one by quadrature 
with O(M) quadrature points, doing O(M’ log M) work 
altogether, with Rokhhn’s non-equidistant fast Fourier 
transform. Since the Fourier series truncation error requires 
bp*+co as S-PO and p-+co, this means GM’+co so 
6 > 0 (dt) where dt is the time step. This means that 6 will 
be, in practice, a fixed small number of time steps, and the 
storage requirements of our method are therefore small. 
This algorithm uses all the points given on r(t) and can 
therefore be expected to be more robust than the algorithm 
given in [ 121. 

After evaluating the coefficients Ck, we must evaluate a 
p*-term Fourier series for S, V at the M 2 grid points in E. 
The coefficients are zero-padded and an M x M FFT 
applied, for a total of O(M2 log M) work. 

Finally, we need an accurate quadrature rule to compute 
these integrals over space and time. Recall that we wish to 
compute the time integral (Eq. (5.16)) given by 

4s 
l-6 

e-dk12(f--r’) M,(f) dt’. (5.17) 
f-d-Al 

The exponential can vary with moderate rapidly over the 
range of integration, when Ikl* is large. On the other hand, 
M, is relatively smooth. Thus we interpolate M,Jt’) by a 
linear function oft’ passing through the endpoints t - 6 - At 
and t - 6. We can evaluate the resulting integral exactly. 

Gauss-Legendre quadrature over each line segment is 
used for the spatial integration over r(t) required to 
evaluate the moments Mkr with typically six points being 
ample. This reduces the integral over r( t ) to a weighted sum 
of sines, to which the non-equidistant fast Fourier transform 
applies. A more detailed description of this calculation can 
be found in Strain [397. 

B. The Local Part SL V 

Now we derive the approximation to the local part S, V. 
From the method of images expression (5.3) for the heat 
kernel K in 3, we have 

qx, x’, t - t’) 

= ,f i: c 1 dlQ2 
k,=-x k>=-m u,=&l oz=~l 

I 

X4A(M)e 
-[(XI -CL Xi -Z&I)‘+ (x2- CT~X~ - 2kt)2J/(4(t - I’)) 

(5.19) 

Since t- t’ < 6, the sum in Eq. (5.19) converges very 
rapidly. Suppose we truncate Eq. (5.19) after one term. The 
error in this approximation depends on the distance d of the 
boundary r( t’) from the box walls, since this measures how 
close the nearest contributing images can lie. Note that this 
distance d is independent of the numerical parameters. All 
but the first term (in which k, = k, =O, 6, = o2 = 1) are 
then bounded by 0((1/6) ewd2@). Then as the numerical 
parameters are refined and 6 --) 0, we can approximate S, I/ 
by the corresponding free-space heat potential 

x V/(x’, t’) dx’ dt’. (5.20) 

(This is just Kac’s “principle of not feeling the boundary” 
[14-j.) Since the Gaussian decays so fast for t’ small, we can 
assume that S, V(x, t) is mostly determined by (x’, t’) near 
(x, r). Thus, we can perform a Taylor expansion, and, to 
lowest order, replace V(x’, t’) by V(x, t) and I-(?‘) by its 
tangent plane at (x, f). A brief calculation, carried out in 
[ 121, shows then that 

s, V(x, t) = J5ji V(x, t) + O(cv2) (5.21) 

for x E T(r). A higher order Taylor expansion can be carried 
out, if desired, as in [ 121, but (5.21) will be accurate enough 
for our purposes. 

Thus, we may summarize the fast algorithm described in 
this section as 

where 

wx, t) = S,(x, t) + S,(x, tX (5.22) 

s, V(x, t) = &ii V(x, r) + O(S3’2) 

s, V(x, t) = i i: c,(t, S) sin nk,x, 
k,=l k,=l 

(5.23) 

x sin zk,x, + O(e-n2p2”/6) 

Ck(t, 6) = e-rr21k’2Ar C,(t - Ar, 6) 

(5.24) 

I 

I-6 
+4 ,-n21k12(I-r’fMk(lt)dt’ (5.25) 

f-d-At 

Mk’J sin(k,nx;)(k,rrx;) V(x’, t’) dx’. (5.26) 
rw 

This decomposition allows us to evaluate S, V in O(M’) 
work per time step at M* points with O(M) quadrature 
points on T(t) at each time t = n At. 
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6. NUMERICAL DETAILS 

In this section, we discuss some of the numerical details 
that arise in the course of the algorithm. 

A. The “Free” Temperature Field U; 

Computing the speed function FG. using Eq. (2.20) 
requires evaluating the free temperature field UG which is 
the solution to Eq. (2.4). To update U;, we use an finite 
difference approximation, for example, 

X 
qj+,+ u;jpl -I- u;,,,i+ u:pl,,-4u;j 

h2 1 9 
(6.1) 

where h = Ax = Ay. (For ease of notation, we shall write all 
formulae assuming a uniform grid). The initial conditions 
Uz.=” are found by solving the consistency conditions 
implied by the original moving boundary problem, which 
requires that, at t = 0, the two boundary conditions 
(Eqs. (1.2k( 1.3)) are satisfied on r, as well as the boundary 
conditions on the box wall for the initial temperature field 
(Eq. (1.1)). Thus we must have 

uo= -Ec(n)C--Ev(n)V, 

[au/an] = - HV on r, 

and 

ug = ug. 

on the box walls. Note that the normal velocity V is also 
unknown at time t = 0. This problem is underdeterminated, 
since u. is arbitrary away from ZY It is physically and mathe- 
matically reasonable to complete the determination of u. 
by imposing the Laplace equation Au, = 0, subject to the 
given boundary conditions on r and 8B. Physically, it is 
reasonable to require u. to solve the steady-state heat equa- 
tion, while mathematically this imposes smoothness and 
requires u0 to satisfy the maximum principle. This equation 
may be solved efficiently by a potential-theoretic method. 
First, u0 is represented as the sum of a harmonic function in 
B with the right boundary values on aB and a classical 
single layer potential with density Vspread over r, resulting 
in an integral equation for V on IY Once this integral equa- 
tion is solved for V, u. may be evaluated everywhere by an 
appropriate fast algorithm. We refer the reader to [39] for 
the details and efficiencies involved. 

B. Splitting the Velocity Field and Computing the Curvature 

As discussed in Section 4.C., we split the speed function F 
into two components, namely, 

F=F,+FG, (6.2) 

where FA is advection and FG depends on the geometry of 
r(t). For crystal growth, the speed function is given in 
Eq. (2.20), and we let 

FA = 
+l 

Edn)+Hfi 
cu+s,v1 (6.3) 

-1 
FG= 

E&)+Hfi 
dn)C. (6.4) 

We then use Eq. (4.26) to update 4. The curvature term in 
Eq. (6.4) is approximated using central differences applied 
to the expression for the curvature of the level curve of 4 
passing through x, namely, 

Since C is approximated by central differences, we maintain 
consistency by choosing a central difference approximation 
to IV41 in the last term of Eq. (4.26). Following the 
philosophy of Section 4, we could construct a grid-free 
approximation to the curvature similar to our approxima- 
tion to the normal, but have not done so here. 

C. Finding the Front r(t) 

As outlined in Step 4 of Section 3, at each time step, we 
must find the level set 4 = 0. We construct a piecewise linear 
approximation to r(t) as follows. Given a cell ij, if max(4i, jr 
di+l,j? di,j+l, #i+l,j+l)<O or min(4i,j, di+i,.j~ tii,j+ly 

dj+ ,,j+l) >O, then the cell cannot contain r(t), so we 
ignore that cell. Otherwise, find the entrance and exit points 
where 4 = 0 by linear interpolation; this provides two nodes 
or “marker points” on r(t) and thus one of the line 
segments which form our approximation to r(t). The collec- 
tion of all such line segments constitutes our approximation 
to r(t), which is then stored for future evaluation of the 
history integrals M,. The line segments need not be 
ordered, nor is there need for any further information about 
the curve. Note that this construction finds O(M) points on 
r(t) on a A4 x M grid, as assumed in the fast evaluation 
scheme. Note also that it generalizes, like the rest of our 
method, to the three-dimensional case. 

D. Differing Time Steps 

The stability requirement for the explicit method for 
solving the our level set equation (4.26) is At = U(Ax2), due 
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to the parabolic-like curvature dependence. This forces 
a small time step for line grids. However, the boundary 
propagation algorithm is relatively inexpensive compared 
to the evaluation of the heat potential required in 
computing F;. Because r(t) moves little during each time 
step d t, the change in F is small. More precisely, there is no 
stability requirement for the velocity evaluation. Thus, we 
provide the option of employing two time steps, d tFront and 
At Vel, with k A tFronf = A beI. That is, we take k steps of size 
At FK7nt in the level set algorithm before we recompute the 
velocity field FZ and update the stored boundary by time 
step Atve,. This option both speeds up the computations, 
since it allows us to increase 6, keep fewer Fourier series 
terms, and requires less storage, since fewer past time steps 
need be stored. 

7. NUMERICAL RESULTS 

In this section, we show a series of calculations with the 
numerical method presented in this paper. 

A. Input Parameters 

The numerical input parameters are 

h = grid size in the unit box 
At = time step 
6 = size of history cutoff ( 30 (At) for consistency) 
p = number of Fourier modes (p >/ 0 (At -I’*) for con- 
sistency) 
k = number of times boundary moves per velocity evalua- 
tion. 

The physical input parameters are 

EC, e V = anisotropy constants 
k, = crystalline symmetry 
8, = angle of crystalline symmetry 
u0 = initial values of temperature field 
us = boundary values of temperature field on box walls 
Size, shape, and position of initial seed. 

B. Results 

In this section, we present the results of our numerical 
calculations using our solidification algorithm. We begin 
with a series of calculations to check numerical consistency; 
that is, to verify that the computed solution converges as the 
numerical parameters are relined. (A further verification 
comparing the computed solution using the level set 
approach with an accurate boundary integral calculation in 
their common range of validity is in progress, see [42].) 
After demonstrating the robustness of the algorithm, we 

perform a study of the relative influence of the physical 
parameters, analyzing the effect of the surface tension coef- 
ficient sC, the kinetic coefficient E “, coefficient of anisotropy 
A, crystalline symmetry kA, latent heat of solidification H, 
and initial seed on the evolving crystal boundary. 

1. Smooth growth. We begin with a calculation per- 
formed with surface tension coefficient sC = 0.001, kinetic 
coefficient &y = 0.01, no crystalline anisotropy (coefficient of 
anisotropy A = 0), and latent heat of solidification H = 1. 
The calculation were performed in a unit box, with a 
constant undercooling on the side walls of us = - 1. 

The initial shape was a perturbed circle with average 
radius R = 0.15, perturbation size P = 0.08, and L = 4 limbs. 
That is, the parametrized curve (x(s), y(s)), 0 bs d 1, 
describing the initial position of the crystal is given by 

(x(s), y(s)) = [(R + P cos 27cLs)](cos 27q sin 27~s) (7.1) 

with R=0.15, P=O.O8, and L=4. 
In Fig. 10, we show a series of calculations performed to 

study the effect of relining the grid size and time step on the 
computed solution. We begin in Fig. 10a with mesh size 
48 x48, and time step At =0.005. The boundary grows 
smoothly outward from the initial limbs. Each limb is 
drawn towards its wall by the effect of the undercooling. The 
value of the kinetic coefficient E y is large enough to keep the 
evolving boundary smooth (in contrast to those calcula- 

3- t 

FIG. 10. Smooth crystal: Effect of relining both grid size and time step: 
(a)48x48mesh,d?=0.005,H=1.0,A=0.0,s,=0.01,~,=0.01,k,=0; 
(b)64x64 mesh, dt=0.0025, H=l.O, A=O.O, ~,=0.001, ~,,=0.01, 
k,=O; (c)96x96 mesh, dt=O.OOl, H=l.O, A=O.O, ~~=0.001, 
&y=O.OO1,k~=O. 
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tions discussed below). In Fig. lob we repeat the above 
calculation with mesh size 64 x 64 and At =0.0025. In 
Fig. lOc, we take mesh size 96 x 96 and At =O.OOl. The 
figures are unchanged, indicating the robustness of the 
algorithm. 

Although the shape remains smooth as it evolves, several 
effects can be seen. First, while the undercooling pulls the 
limbs towards the walls, the other walls act to thicken the 
limb, creating a highly smoothed version of side-branching. 
Second, the tips of the limbs, where the curvature is positive, 
move very fast compared to the indented pockets between 
limbs, where the curvature is negative. 

2. Fingered growth. Next, we perform a similar calcula- 
tion, but change the kinetic coefficient to E y = 0.001. Once 
again, we take surface tension coefficient ~~=0.001, no 
crystalline anisotropy (coefficient of anisotropy A = 0), and 
latent heat of solidification H= 1. The constant under- 
cooling on the side walls is - 1, and the initial shape is again 
a perturbed circle with average radius 0.15, perturbation 
size 0.08, and four limbs, as in Eq. (7.1). 

In Fig. 11, we show the results using these values for the 
physical parameters. We begin with a set of calculations per- 
formed with decreasing time step and fixed mesh size. In 
Fig. 1 la, we show the evolution of r(t) on a 48 x 48 mesh 
with time step At=0.005. Starting from the smooth per- 
turbed circle, the evolving boundary changes dramatically. 

3- t , 

FIG. 11. Fingered crystal: Effect of refining time step: (a) 48 x48 
mesh, dt=O.OOS, H=l.O, A=O.O, ~~=0.001, E~=O.OOI, k,=O; 
(b)48x48 mesh, ~lr=0.0025, H=l.O, A=O.O, ~,=0.001, ~,=0.001, 
k, =O; (c)48 x48 mesh, dr =O.OOl, H= 1.0, A=O.O, ~c=0.001, 

First, each limb flattens out. Then, tip splitting occurs as 
spikes develop from each limb. Finally, side-branching 
begins as each multi-tipped arm is both pulled toward the 
closest wall and also drawn by the walls parallel to the limb. 
In Fig. 1 lb, we perform the same calculation, but decrease 
the time step to At = 0.0025, maintaining the 48 x 48 mesh. 
In Fig. 1 Ic, we perform the same calculation, but decrease 
the time step to At = 0.001, maintaining the 48 x 48 mesh. 
The position of the evolving boundary is unchanged under 
these time refinements, indicating the robustness of the 
numerical algorithm. 

While the evolving boundary is complex, it should remain 
unchanged as both the space and time step are refined. 
In Fig. 12, we study the effects of such refinement, using 
the same physical parameters, that is, kinetic coefficient 
sy= 0.001, surface tension coefficient .sC = 0.001, no crys- 
talline anisotropy (k, = 0, A = 0), and latent heat of 
solidification H= 1, with constant undercooling - 1. In 
Fig. 12a, we take a 32 x 32 mesh with At =0.005. In 
Fig. 12b, we take a 48 x 48 mesh with At =0.005. 
In Fig. 12c, we take a 96 x 96 mesh with At = 0.00125. In 
Fig. 12d, we take a 128 x 128 mesh with At = 0.00125. On 
the coarsest mesh (32 x 32), only the gross features of the 
fingering and tip splitting process are seen. As the numerical 
parameters are refined, the basic pattern emerges. It is clear 
that the resulting shapes are qualitatively the same, and 
there is little quantitative difference between Fig. 12~ and 

a br 

d 

FIG. 12. Fingered crystal: Effect of relining both grid size and time 
step: (a) 32 x 32 mesh, LIZ = 0.005, H = 1 .O, A = 0.0, cc = 0.001, zy = 0.001, 
k,=O; (b)48x48 mesh, dt=O.OOS, H=l.O, A=O.O, ~~=0.001, 
~,=0.001, k,=O; (c)96x96 mesh, dl=O.O0125, H=l.O, A=O.O, 
~~=0.001, ~~=0.001, k,=O; (d) 128 x 128 mesh, dt=0.00125, H= 1.0, 
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12d. Even when computing the highly complex boundaries a 
seen in these figures, the algorithm remains robust. 

,r 

3. Latent heat of solidification. Next, we study the effect 
of changing the latent heat of solidification H. Recall that H 
controls the balance between the pure geometric effects and 
the solution of the history-dependent heat integral. We con- 
sider the same initial shape and physical parameters as in 
Fig. 12 (again, sv=O.OO1, sC=O.OO1, kA=O, A=O, with 
constant undercooling - 1). In all calculations, we use a 
96 x 96 mesh with time step At = 0.00125. However, we vary 
H smoothly: in Fig. 13a, H = 0.25, in Fig. 13b, H = 0.5, in 
Fig. 13c, H = 0.75, and in Fig. 13d, H = 1.0. ( 

The evolving boundaries are all plotted at the same time, 

given at the same time. The mechanism operating here is 
presumably that increasing latent heat decreases the most 

described 

and the differences are substantial. With H =0.25 

by 

(Fig. 13a), the dominance of geometric motion serves to 

linear 

create a rapidly evolving boundary that is mostly smooth. 

stability 

As the latent heat of solidification is increased, the growing 
limbs expand outwards less smoothly, and instead develop 
flat ends. As seen in Fig. 12, these flat ends are unstable and 
serve as precursors to tip splitting. We also note that the 
influence of the heat integral slows down the evolving 
boundary, as witnessed by the fact that all the plots are 

unstable wavelength, as 
theory [ 191. 

FIG. 14. Small-scale refinement of latent heat of solidification H: 
(a)H=O.75,A=0.0,~~=0.001,~,=0.00l,k,=0,96~96,At=0.00125; 
(b)H=0.833,A=0.0,~~=0.001,~~=0.~1,k,=0,96x96,Ar=0.~125; 
(c) H= 0.916, A = 0.0, tC= 0.001, E,, =o.OOl, k,, = 0,96 x 96, At = 0.00125; 
(d) H = 1.0, A = 0.0, eC = 0.001, cy = 0.00.1, k, = 0, 96 x 96, At = 0.00125. 

cr 

b 

C 

To further understand the transition from smooth 
crystals to complex ones, in Fig. 14 we perform a small- 
scale refinement of the latent heat of solidification for 
values H=0.75 (Fig. 14a), H=0.833 (Fig. 14b), H=0.916 
(Fig. 14c), and H= 1.0 (Fig. 14d). In this set of figures, the 
evolving boundaries are not given at the same time. Instead, 
the final shape is plotted when r(t) has reached to within 
0.02 of the box walls (recall that the box has width 1.0). In 
these figures, we can see how lingering and tip splitting 
emerge from the essentially smooth shape given in Fig. 14a 
to the complex shape of Fig. 14d. - - 

4. Coefficient of anisotropy. Next, we study the effect of 
changing the coefficient of anisotropy. We again start with 
the basic crystal shape given in (Eq. (7.1)), with the same 
choices for radius and perturbation. We take E y = 0.001, 
sC= 0.001, H = 1.0, a 96 x 96 mesh with time step 
At =0.00125 and constant undercooling - 1. In these 
calculations, we assume a fourfold anisotropy (k, = 4). In 
Fig. 15a, we take the coefficient of anisotropy A = 0.2, in 
Fig. 15b, A =0.4, in Fig. 15c, A =0.6, and in Fig. 15b, 
A = 0.08. Our results show that increasing the coefficient of 

FIG. 13. Effect of smoothly varying latent heat of solidification H: 
(a)H=0.25, A=0.0,~~=0.001,e~=0.001, k,=0,96x96, At=0.00125; 

anisotropy has several effects. First, it increases the speed of 
(b)H=0.50, A=0.0,~~=0.001,~~=0.001, k,=0,96x96, At=0.00125; propagating interface. Second, it controls the shape of the 
(~)H=0.75,A=0.0,~~=0.001,~~=0.001,k~=0,96x96,Af=0.00125; evolving linger from each limb. Third, it influences the 
(d)H=1.0,A=0.0,~~=0.001,~~=0.001,k,=0,96x96,At=0.00125. amount of side branching that occurs. 
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b 

FIG. 15. Effect of changing coefficient of anisotropy A: (a) A = 0.2, 
~~=0.001, ~~=OXlOl,k~=4, H=l.O, 96x96, At=0.00125; (b)A=0.4, 
so=O.OOl, ~~=0.001, k,,=4, H=l.O, 96x96, At=0.00125; (c)A=0.6, 
&o=O.OOl, ~~=0.001, k,=4, H=l.O, 96x96, Ar=O.O0125; (d)A=O.S, 
eC=0.001,cv=0.001,k,,=4,H=1.0,96x96.At=0.00125. 

I 
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FIG. 16. Changing initial perturbation, anisotropy coefficient A, and 
crystalline symmetry k,: (a) L=4, A=0.4, k, =4, ~~=0.001, .sy=O.OO1, 
H=l.O, 96x96, At=0.00125; (b)L=4, A=0.4, k,=6, e,=O.OOl, 
ey=O.OO1, H=l.O, 96x96, Ar=O.O0125; (c)L=4, A=O.S, k,=4, 
~~=0.001, ey=O.OO1, H=l.O, 96x96, Ar=0.00125; (d)L=6, A=O.S, 
k,=6,sC=0.001,ev=0.001,H=1.0,96x96,At=0.00125. 

FIG. 17. Changing initial perturbation, anisotropy coefficient A, and 
crystalline symmetry k, : (a) L = 6, A = 0.0, k, = 6, cc = 0.001, E y = 0.001, 
H=l.O, 96x96, At=0.00125; (b)L=S, A=O.O, k,=8, ~~=0.001, 
e,,=O.OOl, H=l.O, 96x96, At=0.00125; (c)L=6, A=0.4, k,=6, 
~~=0.001, s,,=O.OOl, H=l.O, 96x96, At=0.00125; (d)L=S, A=0.4, 
k,=8,eC=0.001reY=0.001,H=1.0,96x96,Ar=0.00125. 

5. Changing initial conditions, anisotropy coefficient A, 
and crystalline symmetry k, . In Fig. 16 and 17, we com- 
pute a collection of shapes by altering the initial seed, 
anisotropy coefficient, and degree of crystalline anisotropy. 
All calculations are performed using a 96 x 96 grid, with 
time step At = 0.00125, and E,= 0.001, sC = 0.001, H= 1.0, 
and constant undercooling - 1. 

In Fig. 16, we concentrate on changing the anisotropy 
coefficient and the crystalline anisotropy. In Fig. 16a, we 
take an initial shape with four limbs, fourfold crystalline 
anisotropy, and A = 0.4. In Fig. 16b, we take an initial shape 
with four limbs, sixfold crystalline anisotropy, and A = 0.4. 
In Fig. 16c, we take an initial shape with four limbs, fourfold 
crystalline anisotropy, and A = 0.8. In Fig. 16b, we take an 
initial shape with four limbs, sixfold crystalline anisotropy, 
and A = 0.8. The results depend dramatically on the choice 
of these values. 

In Fig. 17, we concentrate on changing the anisotropy 
coefficient and the initial shape of the crystal. In Fig. 17a, we 
take an initial shape with six limbs, sixfold crystalline 
anisotropy, and A = 0. In Fig. 17b, we take an initial shape 
with eight limbs, eightfold crystalline anisotropy, and A = 0. 
In Fig. 17c, we take an initial shape with six limbs, sixfold 
crystalline anisotropy, and A = 0.4. In Fig. 17d, we take 
an initial shape with eight limbs, eightfold crystalline 
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a b 

FIG. 18. Array of crystals: H = 0, purely geometric motion: (a) Time = 0.&0.025,96 x 96 mesh, At = 0.00125, H= 0.0, A = 0.4, cc = 0.001, ey = 0.001, 
k, =4; (b) Time=0.025-0.05, 96 x96 mesh, At =0.00125, H=O.O, A=0.4, ~~=0.001, e,,=O.OOl, k, =4; (c) Time=0.05-1.0, 96 x96 mesh, 
At=0.00125, H=0.0,A=0.4,&,=0.001,~,=0.001,k,=4 

anisotropy, and A = 0.4. The resulting shapes display a 
variety of intricate behavior. 

6. Arrays of Crystals. To demonstrate the versatility of 
our method, in Fig. 18 and 19 we consider an array of 
crystals. In both cases, we consider a 96 x 96 mesh, with 
time step At =0.00125. In Fig. 18, we show the case of 
purely geometric motion (H = 0, and motion according to 
Eq. (4.1)) with sC= 0.01, E~=O.OO. We consider a 4 x 4 
array of crystals, and take fourfold anisotropy, with 
anisotropy coefficient A = 0.4. We plot the figure at various 
times, as shown in Figs. 18a, 18b, and 18~. In each of these 
figures, we show several time levels of the moving boundary, 
as well as the solid crystal at a early time, depicted by 
shading in those points for which 4 > 0. 

To begin with, the crystals evolve under the influence of 
the fourfold anisotropy. Since the motion of each crystal is 

determined by purely geometric effects, the presence of 
neighboring crystals is not known until collision occurs. 
Once neighboring boundaries meet, they all join together, 
leaving only a collection of pockets which soon collapse. 
The complexity of this problem underscores the ability of 
the level set approach to track involved topological changes. 

In Fig. 19, we perform a similar calculation, but this time 
we turn on the full effects of the equations of motion. 
We take H= 0.75, sC= 0.001, .sy= 0.001, with fourfold 
anisotropy and coefficient of anisotropy A = 0.4. Again, we 
start with a 4 x 4 array of initially circular crystals. In this 
case, the evolving crystals are quite different. Neighboring 
crystals “hear” each other due to the temperature boundary 
conditions on each interface. Thus, we see that the exterior 
edge of crystals grow towards the walls, under the influence 
of the undercooling and the anisotropic effects. However, 
growth towards the center, and in particular for the interior 
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FIG. 19. Array of crystals: H=0.75, full effects: (a) Time =O.OOZS, 
48x48 mesh, At=0.005, H=0.75,,4=0.4,~~=0.001,~~=0.001,k~=4; 
(b) Time = 0.005, 48 x 48 mesh, At = 0.005, H = 0.75, A = 0.4, ec = 0.001, 
ey=O.OOl, k,=0.4; (c)Time=O.Ol, 48x48 mesh, At =0.005, H=0.75, 
A =0.4, eo=O.OOl, e,,=O.OOl, k, =4; (d) Time =0.015, 48 x48 mesh, 
Af=O.O05, H=0.75, A=0.4,ec=0.001,e.=0.001,k,=4. 

crystals, is severely limited, as the release of latent heat by 
the neighbors warms the liquid. 

The calculations presented above are all performed in a 
square container. The influence of the box walls is signili- 
cant on the growing front, and it would be interesting to 
extend our work to other bounding containers, as well as 
infinite domains. The extension to other bounding regions is 
not overly difficult; our focus in this paper has been to 
explain and test the fundamental algorithm. The extension 
of our approach to problems in infinite domains, while not 
as straightforward, would be valuable. 

8. CONCLUSION 

In this paper, we have presented a numerical algorithm 
for computing the motion of complex solid/liquid interfaces 
in crystal growth. Our model includes such physical effects 
as crystalline anisotropy, surface tension, molecular 
kinetics, and undercooling. Our algorithm relies on a 
boundary integral formulation of the equations of motion 
coupled to a level set method for advancing the propagating 
interface. The method is able to follow the evolution of 
extremely intricate shapes, exhibiting complex behavior 
such as lingering, tip splitting, and side branching, as well as 
profound topological changes. In addition, our numerical 
techniaue is shown to be highlv robust. in that refinement of 

the numerical parameters produces a converged solution, 
even for the most complex interfaces. In [35], we use our 
algorithm to generate crystal boundaries under a wide 
range of conditions. Finally, the method presented here 
generalizes in an obvious manner to three space dimensions. 
We shall report on that work elsewhere [36]. 
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